南京郵電大學開發智能DNA納米機器

由血栓造成的血管阻塞性疾病是全球致死率最高的疾病,是威脅人類的頭號殺手。靜脈注射組織纖溶酶原激活劑(tPA)是臨床上治療缺血性卒中、肺栓塞(PE)和其他血栓相關疾病的首選治療方案。

然而,由於tPA存在出血併發症高風險、循環半衰期短和靶向性差等缺點,只有有限比例的患者(不足7%的缺血性卒中患者)能夠從溶栓中獲益。精確地將tPA遞送到血栓部位並按需釋放以減少脫靶和過量效應,是溶栓治療面臨的主要障礙。

在臨床前模型中,納米載體已被證明可以維持tPA的活性並增加其循環時間。通過靶向配體或磁場,血栓靶向給葯可以提高tPA在血栓形成部位的濃度。一系列外源性或內源性的刺激(包括磁場、超聲波、剪切應力和H2O2等)被用來觸發納米載體釋放tPA。儘管該領域已經取得了一些進展,但在動物模型中溶栓效果有限,部分原因是納米載體的結構異質性和溶栓藥物的裝載不明確,導致生物分布和葯代動力學失控。此外,由於血栓形成生物標誌物(例如凝血酶或纖維蛋白)在不同生理過程中濃度動態變化,目前的策略存在傳遞準確性差的問題。

理想的納米載體不僅要能夠靶向,還要能夠識別生物標誌物的局部濃度,從而只在確定血栓形成部位時才觸發tPA的釋放。因此,通過納米載體精確控制tPA的負載、遞送和釋放,也就是實現tPA的精準給葯,仍然極具挑戰性。

2024年3月6日,南京郵電大學汪聯輝教授、高宇副教授、晁潔教授等在Nature子刊Nature Materials上發表了題為:An intelligent DNA nanodevice for precision thrombolysis 的研究論文。

該研究開發了一種智能DNA溶栓納米機器,可在血管內複雜病生理環境下識別血栓的生物標誌物凝血酶,並通過針對凝血酶濃度的邏輯運算區分血栓和傷口凝塊,實現靶向血栓的精準給葯。

近年來,研究人員通過理性設計和製造結構明確的DNA納米結構作為藥物遞送平台,實現藥物分子和功能基團在化學計量和空間上的整合。基於DNA摺紙納米技術,可以構建具有均勻形狀和尺寸的DNA納米結構,並用於開發腫瘤靶向和刺激響應遞送的抗癌藥物和疫苗。

而目前還沒有研究將DNA納米結構用於體內溶栓治療藥物的遞送。在這項研究中,研究團隊基於DNA摺紙技術構建了90×60納米的矩形納米片,每個DNA納米片表面可精確地安排一定數量的tPA分子,並精確控制其位置,從而實現對tPA分子在空間和數量上的精準可控裝載。

通過與預先設計的連鎖DNA三鏈結構雜交,矩形DNA納米片被封閉成管狀DNA納米器件,並屏蔽tPA分子在循環過程中的暴露。通過調節凝血酶適配體交聯鏈和鎖鏈之間的互補鹼基數量,可實現可調閾值控制器對凝血酶濃度的不同響應範圍。在靜脈注射tPA-DNA溶栓納米機器後,能夠按照設定順序自動執行針對凝血酶的追蹤識別、邏輯運算和響應打開的系列任務。由於凝血酶與凝血酶適配體之間的高親和力,它促進了tPA-DNA溶栓納米機器在血栓形成部位的積累。只有當凝血酶的濃度超過閾值(即正常凝血和血栓之間的差異時)DNA溶栓納米機器才會被激活,連鎖的DNA三鏈結構解離,暴露出tPA分子進行溶栓。

基於DNA納米技術的智能DNA溶栓納米機器

接下來,研究團隊在缺血性卒中模型和肺栓塞模型中驗證了該DNA溶栓納米機器的溶栓效果。

相較於臨床溶栓藥物tPA,該研究開發的智能DNA溶栓納米機器在缺血性卒中及肺栓塞的溶栓效率分別提高了3.7倍和2.1倍, 完全溶栓所需的劑量相較於tPA降低了6倍,且 顯著降低了臨床溶栓藥物導致的凝血異常,從而將腦中風的治療窗口期從癥狀發生後的3小時延長到6小時,有望顯著提高卒中患者接受溶栓治療並獲益的人數。

智能DNA溶栓納米機器在 肺栓塞小鼠模型中的治療效果

總的來說,該研究開發了一種DNA溶栓納米機器,可精確地給葯tPA用於精準溶栓治療。其通過 選擇性地跟蹤和靶向血栓形成部位並根據凝血酶濃度按需釋放溶栓劑,從而在提高治療效果的同時最小化副作用。

研究團隊表示,DNA溶栓納米機器由人體的鹼基構成,可由人體內酶降解並經肝腎代謝,因此具有優異的生物相容性,臨床轉化前景好。研究團隊計劃在未來3至5年內完成該智能DNA溶栓納米機器在大型動物模型中的藥效及安全性評估、成藥性研究及規模化生產工藝優化,並積極申報臨床試驗并力爭獲得臨床試驗批件。

南京郵電大學汪聯輝教授、晁潔教授、高宇副教授為該論文的共同通訊作者,南京郵電大學博士生印珏王思雨王嘉輝為論文共同第一作者。

論文鏈接

https://www.nature.com/articles/s41563-024-01826-y

本文轉自:https://www.163.com/dy/article/ISTPK80A053296CT.html

作者: 張津東

群而不黨,和而不同,自由理性皆容納。

發表回復